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ABSTRACT: Using a benchmark Ames mutagenicity data set,
we evaluated the performance of molecular fingerprints as
descriptors for developing quantitative structure−activity
relationship (QSAR) models and defining applicability
domains with two machine-learning methods: random forest
(RF) and variable nearest neighbor (v-NN). The two methods
focus on complementary aspects of chemical mutagenicity and
use different characteristics of the molecular fingerprints to
achieve high levels of prediction accuracies. Thus, while RF
flags mutagenic compounds using the presence or absence of
small molecular fragments akin to structural alerts, the v-NN method uses molecular structural similarity as measured by
fingerprint-based Tanimoto distances between molecules. We showed that the extended connectivity fingerprints could
intuitively be used to define and quantify an applicability domain for either method. The importance of using applicability
domains in QSAR modeling cannot be understated; compounds that are outside the applicability domain do not have any close
representative in the training set, and therefore, we cannot make reliable predictions. Using either approach, we developed highly
robust models that rival the performance of a state-of-the-art proprietary software package. Importantly, based on the
complementary approach used by the methods, we showed that by combining the model predictions we raised the applicability
domain from roughly 80% to 90%. These results indicated that the proposed QSAR protocol constituted a highly robust
chemical mutagenicity prediction model.

■ INTRODUCTION
Mutagens are chemicals that can cause abnormal genetic
mutations that underlie many cancers developed through
environmental, drug, or toxicant exposures. A common assay
for gauging mutagenicity is the Ames test.1 This test uses
several strains of genetically modified Salmonella bacteria with
their histidine synthesis coding genes rendered ineffective
through mutations. Thus, when placed in a histidine-deficient
medium, these strains of Salmonella cannot survive. However,
when placed in a medium with mutagens, reverse mutations
that restore the functional capability of the bacteria to
synthesize histidine enable bacterial colonies to grow in a
histidine-deficient medium. To test a compound for muta-
genicity, the bacteria are exposed to the compound in a
histidine-deficient medium, and by comparing the numbers of
bacterial colonies before and after the exposure, we can classify
the compound as a mutagen or nonmutagen. Because many
chemicals are metabolized in the liver and their mutagenic
effect is due to different metabolic products, compounds are
routinely tested in the presence of a mammalian metabolizing
system otherwise not natively present in the Salmonella
system.2

To date, thousands of chemicals have been evaluated using
the Ames test, and it has become a standard assay for safety
assessment of chemicals and drugs. Although experimental
testing will always be required for novel compounds, in silico

methods for predicting mutagenicity provide an efficient use of
existing data for making highly reliable predictions for certain
compound sets. On the basis of improved in silico predictive
toxicology methods, including quantitative structure−activity
relationship (QSAR) predictions of molecular toxicity, these
methods have gained popularity and acceptance.3−6 In addition,
to meet the regulatory requirements for safety assessments,
regulatory agencies have encouraged the use of QSAR
predictions when experimental data are not available or as
supplementary information.4,7,8

The rising popularity of QSAR methods has been tempered
by an inadequate understanding of when a prediction should be
made and whether it can be trusted. Most QSAR models are
based solely on descriptors calculated from structures of the
small molecules, but the models are used to predict complex
properties that ultimately depend on interactions between these
small molecules and intricate biological systems such as
proteins, RNA, DNA, membranes, etc. Thus, deviations of a
molecule from the training set compounds from which the
model parameters were derived rapidly degrade performance, as
the model can only capture heuristic relationships derived from
a statistical analysis of known molecular components. The
practical problem is then transformed into calculating measures
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of prediction reliabilities that can flag an untrustworthy
prediction and mark the compound for experimental
evaluation. In other words, how do you know what you cannot
predict?
Over the past few years, many studies have used the concept

of an applicability domain for QSAR models to address the
reliability of predictions.6,9,10 As most QSAR studies use
molecular physicochemical parameters and topological indices
as descriptors, the applicability domain is typically defined by
the value ranges of these descriptors, the value ranges of the
principal components of these descriptors, or the distance
between a compound and the training set compounds
calculated on the basis of these descriptors. In our opinion,
the most important premise for QSAR is that molecules with
similar structures have similar activities. Hence, molecular
descriptors that can capture structural similarities should be
appropriate both for developing QSAR models and for defining
the applicability domain of a model.
Molecular fingerprints are perhaps most efficient for

describing molecular structural details, and they are routinely
used in molecular similarity searches.11 Previous studies have
shown that when used with suitable statistical methods, high
quality regression models can be developed using molecular
fingerprints as descriptors.12,13 It was also shown by Sheridan et
al. that fingerprint-based molecular similarity is a good
discriminator for QSAR prediction accuracy.14 Here, we
describe our study of using molecular fingerprints as descriptors
for developing QSAR models and for defining applicability
domains for in silico predictions of chemical mutagenicity.
We confirmed that using molecular fingerprints was an

efficient way to construct high accuracy QSAR models and to
define intuitive applicability domains for two machine-learning
methods: random forest (RF) and variable nearest neighbor (v-
NN). Importantly, we showed that by combining classifications
based on the presence or absence of characteristic structural
fragments via the RF model and chemical structural similarity
using the v-NN model, we could significantly expand the
applicability domain for in silico predictions of chemical
mutagenicity from roughly 80% to 90% of all tested
compounds. This provides a robust tool for in silico predictions
of Ames mutagenicity and for identifying when a lack of
prediction reliability necessitates experimental evaluations.

■ METHODS AND MATERIALS
Ames Data Set. We used the benchmark Ames

mutagenicity data set compiled by Hansen et al.15 This data
set consists of 6512 compounds whose Ames test results were
collected from different sources, with 3503 (53.8%) of them
classified as Ames-positive. As one of the largest bioactivity data
sets in the public domain, it is well suited for the development
and validation of in silico predictive mutagenicity models. In this
study, we divided the data set randomly into 10 equal-sized
groups for 10-fold cross-validation; i.e., we used nine groups as
a training set for model development and predicted
mutagenicity of the 10th group. The process was repeated
until each and every group was left out once for the evaluation
of model performance. To compare performance with other
studies, we also ran 5-fold cross-validation calculations. For the
5-fold cross-validation, we used the data set splits of Hansen et
al.15 That is, the data set was segregated into a static training set
of 1585 compounds and five nearly equal-sized validation
groups of close to 1000 compounds each. In the cross
validation calculations, we combined the static training set with

four of the five validation groups for model training, and the
model thus derived was used to predict the mutagenicity of the
excluded validation group. We repeated this process so that
each of the validation groups was left out once and used to
assess model performance.

Molecular Descriptors. In this study, we used the
extended connectivity fingerprints16 (ECFP) as molecular
descriptors. The fingerprints were generated iteratively to
encode features that represent each atom in larger and larger
structural neighborhoods. At iteration 0 (ECFP_0), we
encoded the information of individual atoms by turning on a
corresponding bit in a binary bit string. The information
includes the number of connections (bonds) to the atom,
element type, charge, and atom mass. At iteration 1, we
encoded the information of all atoms directly bonded to the
atom (within a diameter of two chemical bonds, and hence
termed ECFP_2). At iteration 2 (ECFP_4), we encoded the
information on all atoms within a diameter of four chemical
bonds. When the desired neighborhood size was reached, the
process was complete, and the set of bits representing all
features of the atom was returned as part of the molecular
fingerprint. This process was repeated for all the atoms in a
molecule. The molecular ECFP_n fingerprint is a collection of
all the bits representing atoms in their molecular neighbor-
hoods. Each bit represents a specific molecular structure moiety
and is called a bit feature.
With increasing n, ECFP_n gives an increasingly more

detailed description of molecular structures. However, with
increasing n, the number of unique bit features increases
exponentially, and so does the computational cost. A practical
strategy to balance the cost and performance is to fold an
original fingerprint into a fixed-length bit string by the logical
OR operation.17 Such folding leads to a loss of information due
to bit-feature clashing. The degree of information loss is
proportional to the degree of folding. For Tanimoto coefficient-
based similarity searches of drug-sized molecules, a fixed-length
bit string of 1024 bits works reasonably well, and it is the
default bit length in many software packages.17

Variable Nearest Neighbor Method. On the basis of the
premise of similar structures having similar activities, the k-
nearest neighbor (k-NN) method should be well suited for
QSAR, as it always uses the nearest neighbors to make a
prediction. Indeed, it was one of the machine learning methods
Hansen et al. used in their study of Ames mutagenicity, but
they found that it underperformed compared to the other
machine-learning methods.15 A shortcoming of the method is
that it always gives a prediction for a compound based on a
constant number of nearest neighbors, irrespective of whether
the nearest neighbors are structurally similar enough to ensure
similar activity. To correct for this shortcoming, we recently
proposed a variable number nearest-neighbor (v-NN)
method.18 Instead of using a constant number of nearest
neighbors, v-NN uses all nearest neighbors meeting a structural
similarity criterion for making a prediction. When no nearest
neighbor meets the similarity criterion, we do not make a
prediction in order to maintain the overall reliability of
predictions. In essence, the predicted property y is made via
a weighted average across structurally similar neighbors, as
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where di denotes the Tanimoto distance between a target
molecule for which a prediction is made and molecule i of the
training set, yi denotes the experimentally measured value of
molecule i, v denotes the total number of training set molecules
satisfying the condition di ≤ d0, h is a smoothing factor which
dampens the distance penalty, and d0 is a Tanimoto-distance
threshold beyond which two molecules are not considered
sufficiently similar to include in the average. For predicting
chemical mutagenicity, we assigned a yi value of 1 to all Ames-
positive compounds and a value of 0 to all Ames-negative
compounds in the benchmark data set. Using eq 1, the
predicted molecular mutagenicity value falls between 0 and 1. A
value below 0.5 classified a compound as nonmutagenic;
otherwise, a compound was classified as mutagenic.
Random Forest Method. We also used the random forest

(RF) method19,20 for predicting mutagenicity15 with special
focus on developing an intuitive applicability domain using
molecular fingerprints. To develop an RF model, we trained
500 decision trees. Each of them used a subset of ECFP_n bit
features to recursively partition the training set samples so that
mutagenic and nonmutagenic compounds were enriched in
different branches. To predict the mutagenicity of a compound,
we used all 500 decision trees. A compound was categorized as
mutagenic if it was predicted positive by more than 50% of the
trees. We used the RF module of the R Project for Statistical
Computing21 implemented in Pipeline Pilot22 in this study.
Model Quality Measures. We used the following metrics

to measure quality of the classification models:

=
+

TPR
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TP FN (2)

=
+

TNR
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= +
+ + +
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TP TN

TP TN FP FN (4)

κ = −
−

ACC Pr(e)
1 Pr(e) (5)

where TPR is the rate of positives being predicted as positive
(sensitivity), TNR is the rate of negatives being predicted as
negative (specificity), ACC is the accuracy or probability of
correct predictions (concordance), κ is a metric for assessing
quality of binary classifiers,23 and Pr(e) is an estimate of the
probability of a correct prediction by chance, calculated by the
equation Pr(e) = (((TP + FN)(TP + FP) + (FP + TN)(TN +
FN))/(TP + TN + FP + TN)2) In essence, κ compares the
probability of correct predictions to the probability of correct
predictions by chance. Its values range from +1 (perfect
agreement between model prediction and experiment) to −1
(complete disagreement), with 0 indicating no agreement
above that expected by chance. As a good measure of the
quality of a binary classifier, κ’s merit over ACC is easy to
appreciate with an unbalanced data set, e.g., a data set in which
90% of the samples belong to one class and the remaining 10%
of samples belong to another class. A meaningless classifier that
simply assigns everything to the majority class would have a
decent accuracy of 90% for such a data set, as no more than
10% of the samples would be incorrectly assigned. For such a
data set, κ of the meaningless classifier would be 0, as Pr(e) of
the meaningless classifier would be 90%.

In addition to the above metrics, we also considered
coveragethe percentage of samples within the applicability
domain for a given data setas a quality measure. After all, a
model offers little practical value if it has a very small
applicability domain, even if it can give perfect predictions for a
very small number of samples.

■ RESULTS AND DISCUSSION
Parameter Selection and Performance of the v-NN

Method. With the v-NN method, we considered several
adjustable parameters that may impact performance, including
fingerprint size n, molecular structural similarity threshold d0,
and smoothing factor h.
Previous studies by Hert et al.24 found that for similarity-

based virtual screenings, ECFP_2 is inferior to ECFP_4, and
Riniker and Landrum25 observed that the fingerprints of
ECFP_4 and ECFP_6 are highly correlated, with a squared
correlation coefficient r2 as high as 0.999 for most drug-sized
molecules. We also performed extensive preliminary calcu-
lations using ECFP_2, ECFP_4, and ECFP_6 fingerprints
using the Ames mutagenicity data. We found that ECFP_4 and
ECFP_6 performed similarly, and both were slightly better than
ECFP_2, presumably because ECFP_2 bit features are smaller
and fewer and therefore give less detailed descriptions of
molecular structures. On the basis of our calculations and
previous work, we decided to use only ECFP_4 fingerprints in
the v-NN calculations.
To determine an optimal Tanimoto distance threshold d0

and smoothing factor h, we performed a number of 10-fold
cross-validation calculations by increasing h stepwise from 0.1
to 1.0 (step size 0.1) and increasing d0 stepwise from 0.05 to
0.75 (step size 0.05). We found that overall the model quality
strongly depended on d0 but much less so on h. Figure 1a
shows model performance measures versus d0 obtained at a
constant smoothing factor of h = 0.50. For low d0 values, model
performance as measured by ACC and κ was high, but the
coverage was very low, meaning that the majority of the
compounds do not have near neighbors meeting the stringent
molecular structural similarity requirement. With increasing d0,
model performance deteriorated gradually, whereas model
coverage increased significantly. With a d0 of 0.55, the model
had coverage of 85%, ACC of 80%, sensitivity of 86%, and
specificity of 73%. The ACC of 80% was close to the reported
Ames assay inter- and intralaboratory reproducibility of 87%.26

Figure 1b shows the influence of the smoothing factor h on
model performance obtained at a fixed d0 of 0.55. The results
showed that starting at the low end of h, model performance
improved gradually with increasing h. All performance
measures reached a plateau at around h = 0.50. The results
indicated that the combination of d0 = 0.55 and h = 0.50 gave a
good compromise between performance and coverage.

Parameter Selection and Performance of the RF
Method. To develop a reliable RF classification model, we
evaluated the performance of ECFP_2, ECFP_4, and ECFP_6
fingerprints with different bit string lengths. As there are slightly
more Ames-positive than Ames-negative compounds in the
data set, we used the “equalize class size” option in the model
training process to reduce bias. Each tree was trained with a
subset of ECFP_n fingerprint bit features as molecular
descriptors. The number of bit features of the subset impacts
model quality, as a small number may lead to undersampling of
the descriptor space, and a large number increases computa-
tional costs and may result in identical trees, which reduces the
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power of the RF method. In this study, we used the square root
of the total number of bit features in the fixed bit-length
fingerprint as the number of descriptors for each tree.
To assess the impact of fingerprint size on RF model quality,

we performed 10-fold cross-validation using ECFP_2, ECFP_4,
and ECFP_6 fingerprints folded to a fixed length of 1024 bits
as molecular descriptors. Figure 2a shows that the three
fingerprints performed similarly, with ECFP_4 marginally
better as judged by the magnitudes of κ. The similar
performance of ECFP_2, ECFP_4, and ECFP_6 indicated
that mutagenicity is mainly determined by the presence or
absence of some rather small molecular fragments. This
observation agrees with the fact that most genotoxicity
structural alerts are small reactive structural moieties that
react with DNA molecules.27

To assess the impact of fingerprint length on model
performance, we carried out 10-fold cross-validation calcu-
lations using ECFP_4 fingerprints folded into 512 bits, 1024
bits, and 2048 bits, respectively. Figure 2b shows that the
performance measures of the resulting models were nearly
identical. The κ values were 0.618, 0.621, and 0.621 for models
developed from the ECFP_4 fingerprints folded into 512, 1024,

and 2048 bits, respectively. Because the performance measures
were almost identical, we used a fixed length of 1024 bits for
the remainder of the study.
While the performance of the RF model developed from

ECFP_4 folded into a fixed length of 1024 bits appeared quite
satisfactory, there is no indication of its limitations in terms of
an applicability domain outside which the performance may be
unreliable. As the decision trees used the presence/absence of
fingerprint bit features of the training set compounds to predict
the category of test compounds, and none of the training sets
covered a significant portion of chemical space, there were
certainly structural moieties strongly associated with muta-
genicity not present in the training set. For molecules with
these structural moieties, we expected the RF predictions to be
unreliable. Thus, we hypothesized that the number of
fingerprint bit features of a test compound not present in the
model training process should give an indication of prediction
reliability or the applicability domain of the model.
To investigate whether this hypothesis was correct, we

performed 10-fold cross-validation calculations using ECFP_4
fingerprints as descriptors and keeping track of the number of
ECFP_4 bit-features of the test set molecules that were missing
from the training set molecules. Table 1 and Figure 3a show
that for the 2898 compounds without missing bit features in the
training set, the ACC is as high as 0.855 and κ is 0.694, the
highest achieved in this study. With an increasing number of
missing bit features, model quality initially deteriorated, then
fluctuated somewhat to finally fall off. The performance
measures were less meaningful toward higher numbers of

Figure 1. (a) Performance measures of v-NN with respect to
Tanimoto distance threshold d0 at a constant smoothing factor h of
0.50. (b) Performance measures of v-NN with respect to smoothing
factor h at a constant Tanimoto distance threshold d0 of 0.55. The
coverage (84.3%) is not shown, as it is constant with a d0 of 0.55.
ACC: concordance. TPR: sensitivity. TNR: specificity. κ: kappa
coefficient, an overall model quality measure.

Figure 2. (a) Performance of random forest respective to ECFP_n
fingerprint size n at a fixed fingerprint length of 1024 bits. (b)
Performance of random forest respective to ECFP_4 fingerprint
length. ACC: concordance. TPR: sensitivity. TNR: specificity. κ: kappa
coefficient, an overall model quality measure.
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missing bit features, as the number of compounds with a large
number of missing bit features quickly approached 0. The
results confirmed that the number of missing bit-features was a
reasonable measure of the applicability domain of our RF
classification models for mutagenicity.
As the description of the applicability domain does not have

to be strictly connected to the fingerprints used for the
prediction, we examined the ECFP_2 bit features as an
alternative set. Although for a given molecule, ECFP_4 had
considerably more unique bit features than ECFP_2, all
ECFP_2 bit-features were contained in the ECFP_4 bit
features. Figure 2 shows that both fingerprints performed
roughly equally well in distinguishing mutagenic and non-
mutagenic compounds, and hence, one might also use the
number of missing ECFP_2 bit-features as an indicator of the
applicability domain of the RF models. To confirm this, we
tracked the missing ECFP_2 bit features and the performance
measures of the RF models. Table 2 and Figure 3b show clear
model deterioration with an increasing number of missing
ECFP_2 bit features accompanied by diverging sensitivity and

specificity. For the 86.8% of the compounds without any
missing ECFP_2 bit features, the RF model has an ACC value
of 0.821 and a very small gap between sensitivity (0.835) and
specificity (0.802), indicating that the model predicted positives
and negatives with nearly the same high accuracy. The
advantages of using the smaller ECFP_2 bit features as a
measure of the applicability domain lie both in the sensitivity of
the model with respect to the fingerprints themselves and in

Table 1. Performance Measures of the Random Forest
Model Respective to the Number of ECFP_4 Bit-Features
Not Present among the Training Set compoundsa

missing bit-
features

number of
compounds ACC TPR TNR κ

0 2898 0.855 0.894 0.794 0.694
1 1261 0.785 0.770 0.803 0.570
2 811 0.760 0.720 0.798 0.518
3 446 0.803 0.742 0.860 0.604
4 285 0.775 0.675 0.852 0.535
5 262 0.805 0.684 0.903 0.599
6 169 0.751 0.623 0.859 0.490
7 119 0.664 0.469 0.800 0.280
8 77 0.831 0.704 0.900 0.620
9 37 0.730 0.667 0.813 0.465
10 32 0.781 0.667 0.826 0.477
11 27 0.778 0.833 0.762 0.481
12 22 0.682 0.400 0.765 0.154
13 11 0.636 0.667 0.600 0.267
14 10 0.600 0.333 0.714 0.048
15 9 0.778 0.000 1.000 0.000
16 9 0.889 0.000 1.000 0.000
17 3 1.000 ND 1.000 ND
18 5 0.600 0.500 0.667 0.167
19 1 0.000 0.000 ND 0.000
20 3 0.667 0.000 1.000 0.000
21 3 1.000 ND 1.000 ND
22 2 1.000 ND 1.000 ND
23 1 1.000 ND 1.000 ND
24 1 1.000 ND 1.000 ND
25 1 1.000 ND 1.000 ND
28 2 1.000 ND 1.000 ND
29 1 1.000 ND 1.000 ND
32 2 1.000 ND 1.000 ND
35 1 0.000 0.000 ND 0.000
38 1 1.000 ND 1.000 ND

aThe random forest consisted of 500 decision trees; each of the trees
was based on 32 ECFP_4 fingerprint bit features as molecular
descriptors. The performance measures were derived from 10-fold
cross-validation calculations. ACC: concordance. TPR: sensitivity.
TNR: specificity. κ: kappa coefficient, an overall model quality
measure; ND: not defined.

Figure 3. (a) Performance of random forest respective to the number
of missing ECFP_4 fingerprint bit features in the training set. (b)
Performance of random forest respective to the number of missing
ECFP_2 fingerprint bit features in the training set. Fraction denotes
the fraction of compounds in category. ACC: concordance. TPR:
sensitivity. TNR: specificity. κ: kappa coefficient, an overall model
quality measure.

Table 2. Performance Measures of Random Forest Model
with Respective to the Number of ECFP_2 Bit Features Not
Present among the Training Set Compoundsa

missing bit
features

number of
compounds ACC TPR TNR κ

0 5651 0.821 0.835 0.802 0.637
1 644 0.764 0.603 0.895 0.511
2 151 0.722 0.492 0.895 0.406
3 38 0.605 0.462 0.680 0.139
4 20 0.750 0.667 0.786 0.432
5 6 1.000 ND 1.000 ND
6 2 0.000 0.000 ND 0.000

aThe random forest consisted of 500 decision trees; each of the trees
was based on 32 ECFP_4 fingerprint bit features as molecular
descriptors. The performance measures were derived from 10-fold
cross-validation calculations. ACC: concordance. TPR: sensitivity.
TNR: specificity. κ: kappa coefficient, an overall model quality
measure. ND: not defined.
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their interpretation. Given a missing fingerprint, it is easy to
identify molecules or a scaffold that will complement the
training data set. Thus, for the benchmark Ames mutagenicity
data set, we defined the applicability domain of the RF model as
the chemical space occupied by molecules whose ECFP_2 bit
features were all present in the training set molecules.
Union of the v-NN and RF Applicability Domains. One

of the limiting factors for developing a high-quality QSAR
model is the availability of a large number of structurally diverse
compounds for model training. Because of limited coverage of
the chemical space by small training sets, the applicability
domains of QSAR models are usually small. For practical
applications, expanding the applicability domain is as important
as improving the accuracy of a QSAR model.
To predict molecular mutagenicity, we initially evaluated the

performance of v-NN and RF methods and defined their
applicability domains separately. Fundamentally, each method
focuses on different structural/chemical aspects of chemically
induced mutagenicity. Thus, the RF predictions were based on
the presence or absence of certain molecular structural
moieties, without consideration of the structure of the whole
molecule. This model framework captures mechanisms of
chemical mutagenicity due to the formation of chemical bonds
between the reactive structural moieties of mutagens and DNA
molecules. The v-NN method, on the other hand, makes
predictions based on whole-molecule structural similarity
between a target compound and mutagens in the training set.
This framework is intended to identify mutagens that share
noncovalent binding to DNA or to proteins involved in DNA
damage, repair, and maintenance functions. Efficient non-
covalent binding typically involves both a shape and interaction
complementarity that allows the mutagen to bind to structurally
compatible regions of the DNA or protein. Because the RF and
v-NN predictions may relate to different mechanisms of
chemical mutagenicity, a nonconsensus combination of the
two should provide reliable predictions for a broader range of
chemicals than either method. To test this hypothesis, we
implemented the following prediction procedure for a given
compound: (1) If the compound belongs to the applicability
domain of the RF model, mutagenicity of the compound is
predicted by the RF model; (2) else, if the compound is within
the applicability domain of the v-NN model, mutagenicity of
the compound is predicted by the v-NN model; (3) else, the
compound is considered outside the union of the applicability
domains of both models and no prediction is made.
Table 3 shows the results of 10-fold cross-validation

calculations based on this procedure. The union of the

applicability domains provided the study-highest coverage of
93%, an ACC of 82%, and a κ value of 0.63. These results
indicated that the proposed protocol constitutes a highly robust
and broadly applicable chemical mutagenicity prediction model.

Comparison with MultiCase for PC (MC4PC). To
compare performance with previous studies, we performed 5-
fold cross-validation calculations using the splits of the data set
of Hansen et al.15 The five validation groups contain 984 to 987
compounds each. To replicate their evaluation metrics, we
combined the static training set of 1585 compounds with four
of the five validation groups to develop a model and used the
model to make predictions for the excluded validation group.
Table 4 shows the results of the 5-fold cross-validation using

the RF, v-NN, and combined RF/v-NN methods with those of
MC4PC.28 The performance measures of the RF model were
nearly identical to those of MC4PC, except the RF model had a
higher coverage (81% vs 85%). The v-NN model had a slightly
larger gap between TPR and TNR than the MC4PC model, but
with a higher coverage of 84%. The combined RF/v-NN
approach achieved nearly identical prediction accuracy as
MC4PC in terms of ACC, TPR, and TNR but had a
significantly higher coverage of 92%. Considering that the
inter- and intralaboratory consistency of Ames assays is about
87%, the prediction accuracy of 80% achieved by these methods
is close to the upper limit of a practical prediction model. The
13% higher coverage of the combined RF/v-NN approach
indicated that it could give the same highly reliable predictions
for a significantly broader range of chemicals, making it a robust
method for chemical mutagenicity predictions.

■ CONCLUSIONS

We have shown that both the v-NN and RF models yielded
results comparable to those of MC4PC, a state-of-the-art
computational toxicology software package, on a large bench-
mark Ames mutagenicity data set. More importantly, we
showed that the combination of the models provided a more
robust approach for computational prediction of chemical
mutagenicity, with an enhanced applicability domain compared
to either individual methods or MC4PC. The enhancement is
not due to a consensus prediction; rather, the improvement
stems from extending the applicability domain. The results also
demonstrated that extended connectivity fingerprints are
excellent molecular descriptors for both QSAR model develop-
ment and for defining their applicability domains. A distinct
advantage of molecular fingerprints as QSAR descriptors is that
the results are directly associated with readily interpretable and
actionable structural information. For example, when defining
the applicability domain of a QSAR model by the number of
missing ECFP_2 bit features, a straightforward approach to
broaden the applicability domain is to bring molecules with
ECFP_2 bit features not present in the training set into the

Table 3. Results of the Combined RF/v-NN Approach in the
Applicability Domain Derived from 10-Fold Cross-
Validation Calculationsa

number of compounds ACC TPR TNR κ coverage

6051 0.816 0.830 0.799 0.628 0.929
aACC: concordance. TPR: sensitivity. TNR: specificity. κ: kappa
coefficient, an overall model quality measure. Coverage: fraction of test
set compounds in the applicability domain.

Table 4. Performance of Different Methods in Their
Respective Applicability Domains Derived from 5-Fold
Cross-Validation Calculations

method ACC TPR TNR κ coverage

MC4PCa 0.791 0.842 0.732 0.810
RFb 0.797 0.847 0.723 0.574 0.853
v-NNc 0.788 0.864 0.668 0.546 0.843
RF/v-NNd 0.794 0.842 0.723 0.570 0.921

aMultiCase for PC, a proprietary software of MultiCase, Inc. bRandom
forest. cVariable nearest neighbor method. dCombined RF/v-NN
approach. ACC: concordance. TPR: sensitivity. TNR: specificity. κ:
kappa coefficient, an overall model quality measure. Coverage: fraction
of test set compounds in applicability domain.
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training set and retrain the model. In contrast, when defining
the applicability domain by conventional molecular descriptors
(such as molecular physicochemical parameters, topological
indices, E-state indices, etc.), there is no such intuitive approach
to understand and expand the applicability domain.
Generally speaking, it may be preferable to define an

applicability domain independently of the statistical methods
used for model development, in order to use a single
applicability domain to gauge the reliability of predictions by
different QSAR models. A universal applicability domain,
however, will not work well when multiple and significantly
different molecular mechanisms of action are involved. Because
each mechanism has its own structure−activity relationship, an
applicability domain valid for one QSAR model accounting for
a particular mechanism is unlikely to be valid for another QSAR
model accounting for a different mechanism.
Because discovery projects constantly break new ground and

venture into previously unexplored chemical space, the
performance of most QSAR models tends to deteriorate over
time. A commonly adopted approach to keep QSAR models up
to expectations is to periodically retrain the models with up-to-
date experimental data. In this respect, the v-NN method is
superior, as it does not build a static model but makes
predictions on the fly. As long as the v-NN model can retrieve
data from a repository of up-to-date experimental results, the v-
NN predictions are always up to date. In addition, v-NN is
perhaps the least complex machine learning method, yet its
predictive performance on the benchmark mutagenicity data set
rivals that of other methods. Another advantage of v-NN is that
the method incorporates the concept of an applicability domain
directly in its predictions and flags when a compound is outside
the applicability domain, thus alerting the user that an
alternative assessment or new experimental measurements are
required.
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